
102 International Journal of Web Applications Volume 1 Number 3 September 2009

Databases Integration through a Web Services
Orchestration with BPEL using Java Business
Integration

Wiranto Herry Utomo1, Subanar2, Retantyo Wardoyo3, Ahmad Ashari4

1Faculty of Information Technology
Satya Wacana Christian University
Jl. Diponegoro 52-60
Salatiga 50711
Indonesia
(6298) 321212
wiranto.uksw@gmail.com
2Statistics, FMIPA,
Gadjah Mada University
Gedung SIC Lt. 3 FMIPA
Yogyakarta 55281
Indonesia
(6274) 555133
subanar@yahoo.com

3Computer Science Program, Gadjah Mada University
Gedung SIC Lt. 3 FMIPA
Yogyakarta 55281
Indonesia
(6274) 555133
rw@ugm.ac.id
4Electronics and Instrumentation Lab.
Physics Department
Gadjah Mada University
Yogyakarta 55281
Indonesia
(6274) 555133
ashari@ugm.ac.id

ABSTRACT: Database Binding Component is a Java Business Integration component that provides database operations as
services. The services exposed by Database Binding Component are actually SQL operations on tables. Database Binding
Component exposes both DML and DDL operations as web services (Insert, Update, Delete, Find (Select) and Poll (Select
Inbound)).

This article wants to present an example of how to perform the select table from a remote database, how to send the result
from the select table to the XML fi le, and how to insert extracted records into the extract table on the local database.

We have successfully extracted record table from remote database and written it into the XML fi le and inserted it to the local
database in the Java Business Integration framework and we have composed the SOA Application through a Web Services
Orchestration with BPEL (Business Process Execution Language).

Keywords: Java Business Integration, Database Binding Component, web services, SOA, BPEL

Received: 19 April 2009, Revised 29 June 2009, Accepted 1 July 2009

© 2009 D-line. All rights reserved.

1. Introduction

In the past several years we have seen some signifi cant technology trends, such as Service Oriented Architecture (SOA),
Enterprise Application Integration (EAI), Business-to-Business (B2B), and web services. These technologies have attempted
to address the challenges of improving the results and increasing the value of integrated business processes. The Enterprise
Service Bus (ESB) draws the best traits from these and other technology trends.

The ESB concept is a new approach to integration that can provide the underpinnings for a loosely coupled, highly distributed
integration network that can scale beyond the limits of a hub-and-spoke EAI broker. An ESB is a standard-based integration

103International Journal of Web Applications Volume 1 Number 3 September 2009

platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate
the interaction of signifi cant numbers of diverse applications across extended enterprises with transactional integrity.

There are a number of open source ESBs available now, including OpenESB from Sun, Mule ESB from MuleSource, and
Apache ServiceMix, Spring Integration, Apache Tuscany, JBoss ESB, Apache Synapse. They have some key differences among
themselves which we will not explore in this article. We have used OpenESB to test the demonstration lab in this article.

Open ESB is an ESB initiative started by Sun Microsystems and is hosted as a Java.net project. Open ESB is also an imple-
mentation of the JBI specifi cation. JBI is the new integration API introduced in the J2EE world. It is a great enabler for SOA
because it defi nes ESB architecture, which can facilitate the collaboration between services. It provides for loosely coupled
integration by separating out the providers and consumers to mediate through the bus.

Java Business Integration (JBI) is a Java standard (JSR 208) for structuring business integration systems along Service Oriented
Architecture (SOA) lines. It defi nes an environment for plug-in components that interact using a service model based directly on
Web Service Description Language (WSDL) 2.0. (Hove, 2006) JBI is a messaging-based plug-in architecture. This infrastructure
allows third-party components to be “plugged in” to a standard infrastructure and enables those components to interoperate
seamlessly. The plug-in components function as service providers, or service consumers, or both. Components that supply or
consume services locally (within the JBI environment) are termed “service engines.” Components that provide or consume
services via some sort of communications protocol or other remoting technology are called “binding components”.

Database Binding Component is a Java Business Integration component that provides database operations as services. The
services exposed by Database Binding Component are actually SQL operations on tables. Database Binding Component
exposes both DML and DDL operations as web services (Insert, Update, Delete, Find (Select) and Poll (Select Inbound)).
These webservices would be invoked by other JBI components acting as consumers (Anonim, 2008).

This article wants to demonstrate a database select table from a remote server. The result set from the select table from a
remote server is to be used to populate an extract table that exists on local database. So, we want to grab the records from the
remote database server and insert them into a local database for convenient development and testing.

Figure 1 . Sample Java DB database as a remote database and DBLocal as a local database

104 International Journal of Web Applications Volume 1 Number 3 September 2009

We will assume that the both the “local” and “remote” databases actually exist on laptop. After all, accessing a remote data-
base is just a matter of changing the URL for the database connection pool and having the right database driver installed in
GlassFish. The demo really doesn’t change based upon where the remote database resides.

So this article wants to feature the Database Binding Component to: 1) Perform the select table from a remote database (the
built-in “sample” Java DB database), 2) Send the result from the select table to the fi le (output.xml), and 3) Insert extracted
records into the extract table on the local database (new Java DB database called DBLOCAL that we will create). (See
fi gure 1)

2. Theoretical Foundation

2.1 Services Oriented Architecture

Service-oriented architecture (SOA) is an architectural style that modularizes information systems into services. Collections of
these service will be orchestrated to bring business processes to life. In a successful SOA, these services will be recombined
in various ways to implement new or improved business processes (Brown, 2008). SOA is a software system structuring
principle based on the idea of self-describing service providers. In this context, a service is a function (usually a business
function) that is accomplished by the interchange of messages between two entities: a service provider, and a service con-
sumer (Hove, 2006).

A service provider publishes a description of the services it makes available. A service consumer discovers and reads the ser-
vice description, and, using only that description, can properly make use of the service by mechanism of message exchange.
This is illustrated in fi gure 2. Note that the service provider and consumer share only two things: the service description, and
the message exchange infrastructure (Hove, 2006).

A major advantage of SOA is decoupling: the interface between the consumer and provider is very small. This permits
controlled changes to the provider, that will not have unforeseen effects on the consumer. It also allows the consumer to
switch providers easily, provided only that a compatible service interface is provided. Decoupling allows changes to occur
incrementally. (Hove, 2006)

Service descriptions is JBI are made using the web services description language (WSDL). JBI uses a service model that is based
on WSDL 2.0. Descriptions are published by service provider components, and read by service consumer components.

As shown in fi gure 2, service invocation is accomplished by a service consumer by sending an appropriate request mes-
sage, via a messaging infrastructure (in this case JBI), to the service provider. Interaction between consumer and provider
is always by means of messages. Thus, if the service provider is to provide a response to the service invocation, it will be in
the form of a message. If the service provider wishes to return an error (fault) response to the request, it also is in the form
of a message. (Hove, 2006)

Figure 2. Service Consumer/Provider Interaction (Hove, 2006)

105International Journal of Web Applications Volume 1 Number 3 September 2009

SOA is an architectural style for building enterprise solutions based on services. More specifi cally, SOA is concerned with the
independent construction of business-aligned services that can be combined into meaningful, higher-level business processes
and solutions within the context of the enterprise. [7]

2.2 Realizing SOA with Web Services

The requirement to expose functionalities of applications and access them remotely has resulted in several distributed
architectures and middleware products, which emerge over time. The latest distributed architecture, which combines both
synchronous and asynchronous communications, is Web Services. Web services are the most suitable distributed architecture
for exposing the functionality of applications as services (Juric, 2006). Web Service is a software system designed to support
interoperable machine to machine interaction over a network. (W3C).

Web services are software systems designed to support interoperable machine-to-achine interaction over a network. This
interoperability is gained through a set of XML-based open standards, such as WSDL, SOAP, and UDDI.. SOAP (Simple
Object Access Protocol) is XML-based, message envelope format, WSDL (Web Services Description Language) is XML
format for describing service interfaces. Typically used to generate server and client code, and for confi guration. UDDI
(Universal Description Discovery and Integration) is protocol for publishing and discovering metadata about Web services.
These standards provide a common approach for defi ning, publishing, and using web services.

The fi nal, and probably the most important, SOA concept is composition of services into business processes. Services are
composed in a particular order and follow a set of rules to provide support for business processes. Composition of services
allows us to provide support for business processes in a fl exible and relatively easy way. It also enables us to modify busi-
ness processes quickly and therefore provide support to changed requirements faster and with less effort. For composition,
we will use a dedicated language, BPEL, and an engine on which business process defi nitions will be executed. Only when
we reach the level of service composition can we realize all the benefi ts of SOA (Juric, 2006).

2.3. Composition of Services into Business Processes

A business process is a collection of coordinated service invocations and related activities that produce a business result,
either within a single organizations or across several. Business Process Execution Language for Web Services (BPEL,
WS-BPEL, or BPEL4WS) is the new standard for defi ning business processes with composition of services (Juric, 2006). It is
the cornerstone of Service Oriented Architecture (SOA). With its ability to defi ne executable and abstract business processes
it opens new doors in business process management and represents the top-down approach to the realization of SOA.

The fi nal aspect is the composition of exposed services of integrated applications into business processes. The most popular,
commonly accepted, and specialized language for business process defi nition is BPEL. BPEL promises to achieve the holy
grail of enterprise information systems—to provide an environment where business processes can be developed in an easy
and effi cient manner and quickly adapted to the changing needs of enterprises without too much effort (Juric, 2006).

Composition of services into business processes requires the defi nition of collaboration activities and data-exchange mes-
sages between involved web services. WSDL provides the basic technical description and specifi cations for messages that
are exchanged. However, the description provided by WSDL does not go beyond simple interactions between the client
(sender) and the web service (receiver). These interactions may be stateless, synchronous, or asynchronous. These relations
are inadequate to express, model, and describe complex compositions of multiple web services in business activities, which
usually consist of several messages exchanged in a well-defi ned order.

2.4. Java Business Integration (JBI)

Java Business Integration (JBI) is a Java standard (JSR 208) for structuring business integration systems along SOA
lines. It defi nes an environment for plug-in components that interact using a services model based directly on WSDL 2.0.
(Hove, 2006)

The major goal of JBI is to provide an architecture and an enabling framework that facilitates dynamic composition and de-
ployment of loosely coupled composite applications and service-oriented integration components. It allows anyone to create
JBI- compliant integration plug-in components and integrate them dynamically into the JBI infrastructure (Hove, 2006).

JBI is a messaging-based plug-in architecture. This infrastructure allows third-party components to be “plugged in” to a standard
infrastructure and enables those components to interoperate seamlessly. It does not defi ne the pluggable components themselves,

106 International Journal of Web Applications Volume 1 Number 3 September 2009

but defi nes the framework, container interfaces, behavior, and common services. The meta- container is itself a service-oriented
architecture. JBI components describe their capabilities through the Web Service Defi nition Language (WSDL).

JBI provides a lightweight messaging infrastructure, known as the normalized message router, to provide the mechanism
for actual exchange of messages in a loosely-coupled fashion, always using the JBI implementation as an intermediary. The
Normalized Message Router is “Backbone” of JBI that facilitates interoperation between JBI Components using WSDL-
based service descriptors.

The plug-in components function as service providers, or service consumers, or both. Components that supply or consume
services locally (within the JBI environment) are termed “service engines.” Components that provide or consume services via
some sort of communications protocol or other remoting technology are called “binding components.” (See Figure 3). This
distinction is important for various pragmatic reasons, but is secondary to the components’ roles as providers and consumers
of services (Mahmoud, 2005).

Service Engines and Binding Components are only logically and functionally different – technically both implement the
same interfaces. Service Engines and Binding Components register the services they provide with the JBI framework using
WSDL-based service descriptors (Juric, 2006).

The BPEL Service Engine is a standard JBI Compliant component as defi ned by JSR 208. The BPEL Service Engine en-
ables orchestration of WS-BPEL 2.0 business processes. This enables a work fl ow of different business services to be built
(Rosen, 2008).

The Java EE service engine acts as a bridge between the JBI container allowing Java EE web services to be consumed from
within JBI components. Without the Java EE service Engine, JBI components would have to execute Java EE Web Services
via remote calls instead of via in-process communication. The Java EE Service Engine allows both servlet and EJB-based
web services to be consumed from within JBI components (Rosen, 2008).

SQL service engine allows SQL statements to be executed against relational databases and allows the results of SQL state-
ments to be returned to the client application or other Service Engines for further processing. SQL service engine allows SQL

Figure 3. Java Business Integration Runtime Environment Architecture (Mahmoud, 2005)

107International Journal of Web Applications Volume 1 Number 3 September 2009

DDL (Data Defi nition Language), SQL DML (Data Manipulation Language), and stored procedures to be executed against
a database. This, therefore, allows different scenarios to be executed against the database (Rosen, 2008).

The Intelligent Event Processing service engine allows data to be read from an input source and then processed into a format
that can be used for a variety of different purposes such as reporting or business intelligence information.

XSLT Service Engine enables transformations of XML documents from one format to another using XSL stylesheets. The
service engine allows XSL transformations to be deployed as web services which can then be used by external clients.

Binding components are also standard JSR 208 components that plug in to NMR and provide transport independence to
NMR and Service Engines. The role of binding components is to isolate communication protocols from JBI container so that
Service Engines are completely decoupled from the communication infrastructure. For example, BPEL Service Engine can
receive requests to initiate BPEL process while reading fi les on the local fi le system. It can receive these requests from SOAP
messages, from a JMS message, or from any of the other binding components installed into JBI container (Rosen, 2008).

The fi le binding component provides a communications mechanism for JBI components to interact with the fi le system. It
can act as both a Provider by checking for new fi les to process, or as a Consumer by outputting fi les for other processes or
components (Rosen, 2008).

The SMTP Binding Component provides email services to the JBI Server and can act as either a provider by receiving in-
bound SMTP messages or as a consumer by sending SMTP email to external email addresses. The FTP binding component
provides FTP transport services to the JBI container allowing messages to be received and sent via the FTP protocol. The
SOAP binding component (also known as the HTTP binding component) allows JBI messages to be sent and received us-
ing SOAP over HTTP and HTTPS. The component supports RPC Literal, RPC Encoded, and Document Literal encoding
schemes. The JDBC binding component can act as a provider or a consumer. When acting as a provider, the component can
issue these different DML commands to the database either to select information from the database or to change data: Select,
Insert, Update, and Delete. The JMS Binding Component allows the JBI container to communicate with JMS message queues
and topics. The component can act as a provider and/or as a consumer of JMS messages, and as such can subscribe to a topic
and wait for JMS messages, or it can send messages to a predefi ned Queue or Topic (Rosen, 2008).

2.5. Database Binding Component

The Database BC helps users to handle databases with fl exibility. It also provide Web Services in conjunction with other
OpenESB components. The following components are part of the Database BC (Anonim, 2008).

TheWSDL fromDatabase wizard, which supports Table, Prepared Statements, Procedure,•
and SQL File (NetBeans plug-in).•
CustomWSDL extensions for confi guring the Web Service (NetBeans plug-in).•
Database Binding Runtime component (JBI runtime component).•

Database BC is a JBI runtime component that provides a comprehensive solution for confi guring and connecting to databases.
Database BC provides data operations as Services. It supports the JDBC from within a JBI environment. Other JBI compo-
nents invoke these Web Services acting as consumers.Database BC considers bothData Manipulation Language (DML) and
DataDefi nition Language (DDL) operations as Web Services (Anonim, 2008).

The services that theDatabase BC exposes are actually SQL operations on Table, Prepared Statements, and Procedures.
TheDatabase BC supports the following database artifacts to be exposed as Services.

Table•
Prepared Statements•
Procedures•
SQL File•

The Database BC can assume the role of either a JBI consumer (polling inbound requests) or a JBI provider (sending out-
bound messages).

Database BC acts as a provider in case of outbound message fl ow.Database BC acts as an external service provider when other
engines and components ‘invoke’ it. In this role, when it receives a normalized message as part of the message exchange,
it converts and extracts the SQL operation. The SQL operation is then executed on the specifi ed database. In other words,
when theDatabase BC acts as a JBI provider, it extracts the SQL query from a JBI message received from the JBI framework.

108 International Journal of Web Applications Volume 1 Number 3 September 2009

It then executes the query on a specifi ed database. It converts the reply from the database into a JBI message that other JBI
components can service (Anonim, 2008).

Database BC also acts as a consumer incase of inbound functionality whereDatabase BC polls for records from a particular
table, converts them into normalized message, and sends to the NormalizedMessage Router (NMR). This process is analo-
gous to the inbound connections implemented in CAPS 6. In other words, When theDatabase BC acts as a JBI consumer, it
polls a specifi ed database for updates to a table in the database. When a new record is stored in the table, the database polls
for the record for the specifi ed time interval and the Database BC picks up that record, constructs a JBI message, and sends
the message to the JBI framework so it can be serviced by other JBI components (Anonim, 2008).

3. The Case Study

This section presents an example of how to perform the select table from a remote database, how to send the result from the
select table to the fi le, and how to insert extracted records into the extract table on the local database. As our “remote” data-
base, we will use the “sample” database from Java DB database installed with NetBeans. And as our local database, we will
need to create our new DBLOCAL database. We will select a name and email from Customer table of remote database. The
result of select table will be sent to the output.xml fi le. The result of select table also will be inserted into the EXTRACT-
CUSTOMER table on the local database. (See fi gure 5).

This research uses these JBI components: the HTTP/SOAP Binding Component (simple RPC literal, request/response mes-
sage exchange), the BPEL Service Engine (one BPEL process calling another BPEL process), File Binding Component
(write operation overwriting previous contents of the output fi le) and the Database Binding Components (select and insert
operations).

The activity satisfi es the following process: 1) Create four web services description language (WSDL) (TriggerDBLocalWSDL,
DBGlobalWSDL, DBLocalFileOut, and DBLocalWSDL), 2) Build a BPEL process to orchestrate the four WSDL created

Figure 4. Database Binding Component of JBI (Anonim, 2008)

109International Journal of Web Applications Volume 1 Number 3 September 2009

earlier 3) Build a composite application containing our BPEL process and four WSDL, 4) Deploy application to application
server (Glassfi sh 2.1), and 5) Test application.

3.1. Create WSDL

First step is to create a new WSDL Document called DBGlobalWSDL (Figure 6), DBLocalFileOut (Figure 7), to describe
the interface that will be used to write the fi le system. We need a WSDL to describe the interface and use it to insert the
extracted records into the local database. Create a new WSDL called DBLocalWSDL (Figure 8). And fi nally, we need to
be able to initiate our BPEL process. So, we need a WSDL to describe how to describe its interface. Create a new WSDL
called TriggerDBLocalWSDL.

Figure 5. Scenario of message fl ow from remote DB to XML File and local DB

Figure 6. DBGlobalWSDL that defi nes interface for select table into the database

110 International Journal of Web Applications Volume 1 Number 3 September 2009

Figure 7. DBLocalFileOut that describes the interface
that will be used to write the fi le system

Figure 8. DBLocalWSDL that describes
the interface that will be used to insert the
extracted records into the local database

The WSDL document will be used to describe the Web Service interface of our BPEL orchestration process. The WSDL
represents the “external” WS Interface for the whole orchestration we are going to compose. We used four WSDL docu-
ments with the following functions : 1) TriggerDBLocalWSDL to initiate our BPEL process, 2) DBGlobalWSDL to defi ne
interface for select table from the remote database, 3) DBLocalFileOut to describe the interface that will be used to write
the fi le system, and 4) DBLocalWSDL to describe the interface that is used to insert the extracted records into the local
database.

3.2. Composing services with BPEL

Composing services with BPEL process starts when TriggerDBLocalWSDL, a client that invokes its operation. If the client
has been generated from the WSDL (TriggerDBLocalWSDL), we can then specify the operation invoked and the variables
input. All operation data types are retreived from the process WSDL. A visual link is created in order to show the messages
fl ow between parts (See Figure 9).

In this fi gure 9 below, a request is made from the client to the JBI Container. This request is passed via NMR to the BPEL
Service Engine. The BPEL Service Engine then makes a request to the Database Binding Component via NMR. The Data-
base Binding Component returns a message to the File Binding Componet again via NMR. The File Binding Component
then makes a request to the Database Binding Component via NMR. Finally the message is routed back to the client through
NMR and JBI framework. The important concept here is that NMR is a message routing hub not only between clients and
binding component, but also for intra-communication between different binding components. The entire architecture we have
discussed is typically referred to as an Enterprise Service Bus.

111International Journal of Web Applications Volume 1 Number 3 September 2009

3.3. Composite Application

In order to be able to deploy the BPEL orchestration in the Application Server, we have to create a Composite Application
project and add the BPEL application as a JBI module. Now, our SOA application is successfully deployed in the Applica-
tion Server (See Figure 10).

Composite applications are both a form of integration as well as application development. The main objective of the composite
application project system is to provide a deployment container for various types of JBI component projects.

In fi gure 10, the fi rst pane of the editor lists all the WSDL Ports. The second pane shows all available JBI Modules. Any
JBI module including BPEL modules, can be draged-and-dropped, in this space, Service Units can be added as part of other
service assemblies in the third pane. Note that our composite application has four WSDL Ports. The WSDL ports are exposed
through SOAP binding, File binding, and Database Binding.

The Composite Application project can be enhanced by adding test cases, binding the operation, supplying input, and then
using the Tester. The test case shows that the result is a success. The test is passed, the execution fl ow has been performed
correctly. (See Figure 11). Now we can see the SOAP response message coming from our SOA application.

Look in the output directory to fi nd the output.xml fi le that has been created. Open the fi le to see the records that were read
from the database via the select from a table (Figure 12).

After that, check the result from the test case and view the contents of the extract table (See fi gure 13). We see that the table
was inserted successfully by the execution of our DBLocalWSDL.

Figure 9. DBBPELModule to composing services

112 International Journal of Web Applications Volume 1 Number 3 September 2009

Figure 10. SOA Composite Application

Figure 11. Test passed

3.3. Practical result

Construction of applications using a service-oriented architecture differs signifi cantly from techniques used in other software
architectures. SOA requires that the software developer create services (or integrate existing business functions as services)
that are reusable in different applications, including the creation of new services. Each service is designed for future frequent
reuse. Reuse is possible by decoupling the service from the consumer. Applications are composed from different services.
SOA is being implemented on ESB infrastructure using extensible suites from vendors. Web services and BPEL are the key

113International Journal of Web Applications Volume 1 Number 3 September 2009

technologies of SOA. Web services use XML, WSDL, XSD and SOAP to provide interoperability and to provide service
delivery. BPEL provides orchestration for composite applications that use web services. JBI provides a middleware standard
for integration in the Java community and OpenESB is the reference implementation for JBI.

JBI provides integration of existing business functions as services. In this project research, the remote database is “wrapped”
as a service using WSDL document called DBGlobalWSDL. The local database is “wrapped” as a service using WSDL docu-
ment called DBLocalWSDL, and the fi le XML is “wrapped” as a service using DBLocalFileOut. This WSDL will be used
as the “external” WS Interface for the whole orchestration that we are going to compose. And we have seen that we have
successfully extracted record table from remote database and written it to the XML fi le and inserted it to the local database
So this research can be considered as a proof of concept of implementation for a feasible and effi cient databases integration
using Java Business Integration through web services orchestrations with BPEL.

Databases Integration is an entry point opened to other integations. Thus this research is an entry point to conduct intra-
business as well as inter-business integrations. Various buisness integration protocols have been provided by JBI framework,
inter alia Database, SOAP, JMS, File, SMTP, etc. The test case using framework JBI shows very satisfying results of the
chosen approach.

Conclusion

Java Business Integration (JBI) provides a foundation for construction a SOA. It provides for integration of existing business
functions as services, and decoupled interaction between service providers and consumers. It provides direct support for
composite application creation through the mechanism of JBI service assemblies, which allow applications to be composed
directly from the service-based interfaces of JBI service units.

Figure 12. The output.xml fi le is the result from the select table

114 International Journal of Web Applications Volume 1 Number 3 September 2009

Figure 13. The result from the select table inserted to the local database

Finally, we have extracted record table from remote database and written it to the XML fi le and inserted it to the local
database in the Java Business Integration framework and we have composed the SOA Application through a Web Services
Orchestration with BPEL (Business Process Execution Language).

References

[1] Hove, R. (2006). Using JBI for Service-Oriented Integration (SOI), Sun Microsystems Inc. 4150 Network Circle,
Santa Clara, CA 95054 U.S.A. DOI = http://www.java.sun.com

[2] Hove, R., (2006). JBI Components: Part 1 (Theory), Sun Microsystems Inc. 4150 Network Circle, Santa Clara, CA
95054 U.S.A. DOI = http://www.java.sun.com

[3] Anonim, (2008). Understanding the Database Binding Component. Sun Microsystems, Inc. 4150 Network Circle,
Santa Clara, CA 95054 U.S.A DOI = http://www.java.sun.com

[4] Mahmoud, Q.H., (2005). Service-Oriented Architecture (SOA) and Web Services: The Road to Enterprise Application
Integration (EAI). 4150 Network Circle, Santa Clara, CA 95054 U.S.A. DOI = http://www.java.sun.com.

[5] Brown, P.C., (2008). Implementing SOA: Total Architecture in Practice, United States of America : Addison Wesley
Professional.

[6] Juric, M. B., Mathew, B., and Sarang, P. (2006). Business Process Execution Language for Web Services, Birmingham-
Mumbai: Packt Publishing.

[7] Rosen, M., Lublinsky, B., Smith, K., and Balcer, M., (2008). Applied SOA: Service-Oriented Architecture and Design
Strategies, Indianapolis: Wiley Publishing, Inc.

[8] Salter, D. and Jennings, F., (2008). Building SOA-Based Composite Applications Using NetBeans IDE 6, Birmingham-
Mumbai: Packt Publishing.

