
135International Journal of Web Applications Volume 1 Number 3 September 2009

An Implementation Case of Business Centric
Event-driven SOA Test Framework1

Youngkon Lee
e-Business Department, Korea Polytechnic University
2121 Jeongwangdong, Siheung city, Korea
yklee777@kpu.ac.kr

ABSTRACT: This paper presents an implementation case study for business-centric SOA test framework. The reference
architecture of SOA system is usually layered: business process layer, service layer, and computing resource layer. In the
architecture, there are so many subsystems to affect system performance, moreover they relate with each other. As a result,
in the respect of overall performance, it is usually meaningless to measure each subsystem’s performance separately. In SOA
system, the performance of the business process layer with which users keep in contact depends on the summation of the
performance of the other lower layers. Therefore, measuring performance of the business layer includes indirect measurement
of the other SOA system layers. We devised a business-centric SOA test framework in which activities and control primitives
in business process managers are simulated to invoke commands or services in a test scenario. That is, in the test framework,
a real business process scenario can be replaced to a mimicked business process test scenario, which is executed in a test
proxy based on event mechanism. In this paper, we present the concept of business process activity simulation, 2-layered test
suites model, and reference architecture.

Keywords: SOA, BPM, test suites, event-driven

Received: 11 March 2009, Revised 14 April 2009, Accepted 29 April 2009

© 2009 D-line. All rights reserved.

1. Introduction

Service Oriented Architecture (SOA) is generally defi ned as a business-centric IT architectural approach that supports inte-
grating businesses as linked, repeatable business tasks, or services [1]. SOA enables to solve integration complexity problem
and facilitates broad-scale interoperability and unlimited collaboration across the enterprise. It also provides fl exibility and
agility to address changing business requirements in lower cost and time to market via reuse.

SOA has a lot of promises of interoperability, however, at the cost of: lack of enterprise scale QoS, complex standards which
are still forming, lack of tools and framework to support standards, and perform penalty. Recently, as SOA has been widely
adopted in business system framework, performance issues in SOA are raised continuously from users and developers.

SOA system is generally composed of various subsystems, each of which relates intimately with others. Therefore, if performance
issues are raised, it’s very diffi cult to fi nd out clearly what’s the reason. For example, if a business process in SOA system has
longer response time than before, there could be various reasons: cache overfl ow in a business processor, wrapping overhead
in service interface, or exceptions in computing resources, etc. One thing clear is that the performance of business process layer
depends on the lower layer and measuring the performance of business layer includes indirect measuring the performance of
all the lower layers. But, most test frameworks developed until now focus on measuring SOA messaging performance, as we
present in section 2. They almost adopt batch-style testing where all the test cases are executed in a sequence.

OMG published a standard SOA reference model, MDA (Model Driven Architecture) [2]. It is widely adopted in real world
because it presents normative architecture and enables SOA system to be implemented in a business-centric approach. In the
MDA, a business process is designed fi rstly in a way for satisfying business requirements and later services are bounded to

1This test framework has been implemented in an e-Government project sponsored by KIEC(Korea Institute of Electronic Commerce).

136 International Journal of Web Applications Volume 1 Number 3 September 2009

the activities in the business process. Business processes are described in a standardized language (e.g. WSBPEL) and they
are executed generally on a business process management (BPM) system. Some subgroups in OMG are also studying actively
how to apply event-driven architecture (EDA) on SOA system and they proposed a draft that EDA can be used as a bridge
among SOA service groups because EDA provides a mechanism to decouple concretely services [3].

For testing SOA systems implemented according to the MDA reference model in business-centric way, test harness should
have business process simulation functionality so that it may behave as BPM and at the same time test overall performance.
This means that the test harness can execute business process, perform tests, and gather metric values.

We devised a new SOA test harness, BOSET2, focusing on business process layer. It adopts a proxy mechanism, in which
business processes and activities are simulated and executed to invoke events. The events initiate the service invocation so
that the test system can gather the metric of the service performance. For the business-centric test execution, we also designed
test suite, which is a document including structured and standardized test script. The test suite enables test harness to change
its confi guration fl exibly according to the change of test target.

In section 2, we present some related works. Section 3 provides the principle requirement for test suite. In section 4, we
describe the principle of test suite design. Section 5 presents briefl y event-driven execution model and section 6 shows the
related event data structure and operations in detail. Section 7 presents reference architecture for SOA test framework. Con-
clusions are presented in last section.

2. Related Works

There are various test frameworks and script languages developed or proposed for testing Web services systems, business
processes, or business applications. This section briefs representative test systems and scripts.

2.1 Web Services Quality Management System

This system has been developed by NIA(National Information Agency in Korea) in order to measure Web services quality on
the criteria of WSQM (Web Services Quality Model) quality factors [4]: interoperability, security, manageability, performance,
business processing capability, and business process quality. This system contributes to consolidate the quality factors of SOA.
However, it requires expanding its architecture to apply SOA system, because it targets to only Web services system.

2.2 ebXML Test Framework

This framework has been implemented by NIST and KorBIT for testing ebXML system according to OASIS IIC Specifi ca-
tion [5]. It could test packaging, security, reliability, and transport protocol of ebXML messaging system implemented by
ebMS specifi cation [6]. The main purpose of it is to test conformance and interoperability of ebXML messaging system, so
it is not proper to test service oriented systems. Besides, it cannot test ad hoc status resulting from various events, because it
is not event-driven but batch-style test framework.

2.3 JXUnit and JXU

JXUnit [7] and JXU [8] is a general scripting system (XML based) for defi ning test suites and test cases aimed at general
e-business application testing. Test steps are written as Java classes. There is neither built-in support for business process test
nor support for the event-driven features. However, as a general test scripting platform that relies on a common programming
language, this system could be used as an implementation platform for general e-business test.

2.4 ATML (Automatic Test Mark-up Language)

In its requirements, this specifi cation provides XML Schemata and support information that allows the exchange of diagnostic
information between conforming software components applications [9]. The overall goal is to support loosely coupled open
architectures that permit the use of advanced diagnostic reasoning and analytical applications. The objective of ATML is fo-
cusing on the representation and transfer of test artifacts: diagnostics, test confi guration, test description, instruments, etc.

2 BOSET: Business Oriented SOA Execution Test Framework

137International Journal of Web Applications Volume 1 Number 3 September 2009

2.5 Test Choreography Languages

These are standards for specifying the orchestration of business processes and/or transactional collaborations between part-
ners. Although a markup like XPDL [10] is very complete from a process defi nition and control viewpoint, it is lacking the
event-centric design and event correlation / querying capability required by testing and monitoring exchanges. Also, a design
choice has been here to use a very restricted set of control primitives, easy to implement and validate, suffi cient for test cases
of modest size. Other languages or mark-ups defi ne somehow choreographies of messages and properties: ebBP[11], WS-
BPEL[12], WS-Choreography[13]. The general focus of these dialects is either the operational aspect of driving business
process or business transactions, and/or the contractual aspect, but not monitoring and validation. Although they may express
detailed conformance requirements, they fall short of covering the various aspects of an exhaustive conformance check e.g.
the generation of intentional errors or simulation of uncommon behaviors. In addition, the focus of these languages is mainly
on one layer of the choreography – they for instance ignore lower-level message exchanges entailed by quality of service
concerns such as reliability, or binding patterns with the transport layer.

3. Requirements for Test Suite

Because SOA system is very complex and variable and has a number of heterogeneous subsystems, test suites including test
logic and test cases should satisfy following requirements.

Event-driven and time-independent execution model: The test script must be executable either for real-time verifi cation
or as off-line (deferred) validation over a log of the interaction. Test cases also must be able to react to all sorts of events, and
correlate past events. For these reasons, all input must be captured in the form of events and wrapped into a standard event
(XML) envelope. The coordination of test-case executions within a test suite is also event-driven. The state of the test case
workfl ow is also represented as events so that no additional persistence mechanism is required by a recoverable test engine.

Protocol-agnostic and platform-ubiquitous: Test script logic and control are abstracted from SOA protocols; it is versatile
for messaging, business process, and business content testing regardless of technologies. Hence it can be used with either
ebXML AS2 or Web Services message profi les. Of course a test case script that verifi es business headers in ebXML may not
apply to Web service messages, but a change in event-adapter should be the only modifi cation needed to adapt a test script
focused on verifying business transaction and payloads, from one message protocol to the other.

Adaptable interface: In our approach, the SOA test framework should have proxy which is delegated to replace temporarily
BPM system. As a result, test framework has facilities to interface seamlessly services, functions, and components. For
example, we implemented a service adapter, which transforms service appearance for adapting services. There could be plug-
in systems which enable module or components to be easily connected and service wrappers which encompass functions in
legacy systems into service types.

Extensible coverage of BPA simulated: BPA set simulated in test framework should be extensible to cope with the change of
BPM systems which could be test target. Each BPA simulated should follow a standardized interface for connecting services.

4. Test Suite Design

Test suite means a document which describes the test target and test procedures. Test target is usually extracted from SOA stan-
dard specifi cation. Test procedure could be used to control test fl ows. For making it easy, we designed 2-layered model for test
suites: abstract test suites (ATS) and executable test suites (ETS) as shown in Figure 1. ATS describes test metadata of target
expressed in test assertions and procedure and ETS describes executable test steps in the format of test execution language.

A test assertion is a testable or measurable expression for evaluating the adherence of part of an implementation to a norma-
tive statement in a specifi cation. There is always a need to make explicit the relationship between a test assertion and the
precise part of the specifi cation to which it applies.

Test procedure describes test fl ow composed of a series of test activities which are simulated to business process activities.
It is used in a test proxy, which is delegated as a process controller for test on replace of a BPM system. Test environment is
a confi guration description of a test harness.

ETS is a script for presenting each test step (in the other words, test case). It is independent from the SOA standard specifi ca-
tion and domain environment but depends on the test execution model. For supporting machine and human readability, its
format follows predefi ned XML schema and it has basic operation sets to initiate, control, and process events. Table 1 shows
the basic operation sets in ETS.

138 International Journal of Web Applications Volume 1 Number 3 September 2009

Operation type Operation
name

Description

Event operation

post generate an event

fi nd select event(s) from EventBoard

mask mask or unmask some past events to a
monitor instance

Monitor fl ow Control start start a new instance of a monitor

set assign a value or an XML infoset

sleep suspend an instance of a monitor

cad check-and-do operation.

jump pursue the execution thread at another
(labelled) test step inthe monitor

External resources call invoke either an event-adapter or an
evaluation-adapter

Test case control actr dynamically activate a trigger

exit terminate the current test case

Table 1. Basic Operations in ETS

5. Event-driven Execution Model (EDEM)

For invoking services, we adopted event-triggering mechanism according to business process activity. The event-triggering
mechanism includes following concepts:
 • Event triggered by simulated BP. An event is triggered by a business activity which is mimicked for execution in test proxy.
 • Services invoked by an event. A service on a test platform is invoked by an event, which sends an initiating message

synchronously. An initiated service can invoke the other services by replicating and propagating the message according
to the test mission.

 • Workfl ow control based on a thread model. This is embedded in the notion of Monitor, which is the basic execution
unit for test cases.

 • Event-driven scripts. The general control of test case execution within a test suite and of the test suite itself is repre-
sented by Triggers which defi ne under which conditions and events an execution takes place.

 • Event logging and correlation. Event manage ment, central to BOSET, is supported by an entity called Event Board.

Figure 1. BOSET Test Suit Structure

139International Journal of Web Applications Volume 1 Number 3 September 2009

The Event Board normally suffi ces for mediating all inputs to a test case, as well as outputs.
 • Messaging gateways. Message traffi c expected in all e-Business applications, is mapped to and from events. Event-

Adapters perform these mappings, allowing for abstracting test cases from communication protocol aspects.
 • Semantic test plug-ins. Agile verifi cations on business documents, ranging from schema validation to semantic rules

over business content, are delegated to Evaluation-Adapters.

While these features may themselves be potentially complex, it has been possible in BOSET to identify a minimal set of
controls suffi cient for SOA testing. For example, workfl ow control only makes use of the simplest control primitives that
have proved suffi cient for test cases, not pretending to replicate the full range of workfl ow operators. Event correlation and
querying rely on simple selection expressions based on XPath.
Based on the main concepts, the test execution model requires following components (Figure 3):
Monitor: This represents the logic of a test case. A test case may use several monitors in its defi nition, and a test case in-
stance may engage the concurrent or sequential execution of several monitor instances. A monitor is a script that specifi es
the steps and workfl ow of the test case. A monitor instance is always created as the result of a start operation executed either
by another monitor or by a trigger. The fi rst monitor started for a test case (i.e. Started by a Trigger) is called root monitor for
the test case. There is always a trigger at the origin of monitor(s) execution (directly or indirectly). A monitor instance can
start another monitor instance concurrently to its own execution, and can activate another trigger. The outcome of a test case
(pass / fail / undetermined) is determined by the fi nal outcome of the monitor(s) implementing this test case. The execution
of a monitor produces a trace that can be posted as an event.
Trigger: The trigger is a script that defi nes the event or condition that initiates the execution of the test case, i.e. the execu-
tion of a monitor. A trigger can be set to react to an event (event-watching) or to a date (clock-watching), and is associated
with one or more monitors. Because a trigger initiates the execution of a test case, it is usually not considered as part of the
test case itself, but part of the test suite that coordinates the execution of several test cases. A trigger is active when ready to
react to events for which it has been set, and ready to trigger its associated monitors. When a trigger starts a test case, a case
execution space (CES) is allocated, within which the created monitor instance as well as all subsequent dependent instances
will execute. The CES defi nes a single scope of access to events and to other objects referred to by variables. When activated,
a trigger is given to a context object, which will be part of the CES of the monitor(s) the trigger will start.
Test Suite: A test suite is a set of test cases, the execution of which is coordinated in some way. This coordination may be
represented by a monitor, that will either directly start the monitors that represent individual test cases, or that will instead

Figure 2. Event-Driven Execution Model

140 International Journal of Web Applications Volume 1 Number 3 September 2009

activate triggers that control these monitors. For example, a test suite may serialize the execution of test cases TC1 and TC2
by setting a trigger for TC2 that reacts to the event posted by TC1 at the end of its execution. Or, the test suite may set a trigger
that will initiate the concurrent execution of several test cases. The following fi gure illustrates the structure of a test suite:
Event (or Test Event): An event is a time-stamped object that is managed by the Event Board. Events are used to coordinate
the execution of a test case, and to communicate with external entities. For example an event may serve as a triggering
mechanism (in event-driven triggers) for test cases, as a synchronization mechanism (e.g. a test step waiting for an event) or
as a proxy for business messages, in which case the mapping between the event representation and the business message is
done by an event adapter. Some events are temporary, which means they are only visible to monitors from the same test case
execution (CES) and are automatically removed from the event board at the end of the CES they are associated with.
Event Board (EB): The event board provides event management functions, which invoke SOA services to operate by sending
messages. Events can be posted to the board, or searched. An event board can be seen as an event log that supports additional
management functions. The event board is the main component with which a monitor interacts during its execution. Data
type and operations in the EB are presented in next section in detail.
Event Adapter: An event adapter is a mediator between the external world and the event board. It maps external events
such as message sending/receiving, to test events and vice versa. For example, an event adapter will interface with an SOA
gateway so that it will convert received business messages into a test event and post it on the event board. Conversely, some
events posted on the event board by a monitor can be automatically converted by the adapter into business messages submit-
ted for sending. An event adapter can also be directly invoked by a monitor. Whether the adapter is designed to react to the
posting of an event on the board or is directly invoked by the monitor, is an implementation choice. In both cases, it would
convert a test event into an external action.
Evaluation Adapter: An evaluation adapter is implementing – or interfacing with an implementation of - a test predicate
that requires specifi c processing of provided inputs that is not supported by the script language. Typically, it supports a
validation check, e.g. semantic validation of a business document. An evaluation adapter is always invoked by a monitor.
On invocation, an evaluation adapter returns an XML infoset summarizing the outcome, which can be evaluated later in the
monitor workfl ow.

6. Event Board

Decisions about the outcome of a test case will often require access to a history of past events. Such a history of events is
abstracted as the “Event Board” (EB). Relying on event analysis for test cases also provides more control on the execution

Figure 3. Test Case Triggering

141International Journal of Web Applications Volume 1 Number 3 September 2009

time, which may be deferred. The notion of event or “test event” must be understood as an abstraction of any event that may
impact the execution of a test case, or result from it, e.g. business messages received or sent, error notifi cations, outcome of
a test case, test operator intervention, etc.

The EB also provides operations for managing events. A standard (XML format) representation of the invocations of such
operations is proposed for the purpose of portability of test case scripts.

Although an implementation of the EB will likely act as an event sink, the EB is only assumed (1) to represent a log of
events that have occurred, (2) to support an event model (or rather, an event-envelope model) and (3) to provide some form
of management of and access to these events.

6.1 The Event Model

Every event posted to the EB is given an envelope, or event-envelope. An event envelope is an object that facilitates the event
management. It has the following attributes:

 • iD: a generated number assigned to an event at the time of its posting to the EB. The iD uniquely identifi es the event. • •
The iD defi nes a total order for the events in the board. This order is the same as the time order refl ected by the timePost
attribute.

 • timePost: date/time of the event posting.
 • caseId: the ID of the CES(case execution space) which the monitor instance that generated this event belongs to (in case

the event is generated by a monitor).
 • mInstId: the ID of the monitor instance that generated this event (in case the event is generated by a monitor).
 • evType: event type, for which there are a few reserved values: “endmonitor”, “endcase”, “endsuite”.
 • temp: a boolean that is “true” if the event is temporary.
 • evProperties: a list of name / value pairs open for profi ling.

The above attributes are “added” to the original event – or event content - for facilitating the processing of the event in the
context of the board. The evProperties items are derived from the content of the original event, and represent an abstraction
of it. It may contain references to external objects not managed by the EB. It may be used as a manifest for the actual event
content. The event envelope is represented as an XML infoset of the form:

<defi ne name=”Event”>
<element name=”event” datatypeLibrary= “http://www.w3.org /2001/
XMLSchemadatatypes”>
<attribute name=”id”><data type=”integer”/></attribute>
<attribute name=”timepost”><data type=”dateTime”/> </attribute>
<attribute name=”evtype”><text/></attribute>
<attribute name=”temp”><data type=”boolean”/> </attribute>
<optional>
<attribute name=”caseid”><text/></attribute>
<attribute name=”minstid”><text/></attribute>
<element name=”evproperties”>
<zeroOrMore>
<element name=”property”>
<attribute name=”name”/>
</element>
</zeroOrMore>
</element>
</optional>
<element name=”content”>

<!-- a wrapper for the original event content -->
</element>
</element>
</defi ne>

Table 2. XML Infoset for Event Envelop

142 International Journal of Web Applications Volume 1 Number 3 September 2009

The <content> element is a wrapper for any document associated with the event. For example, an event may be a SOAP mes-
sage either sent or received. In that case the <content> element contains the SOAP envelope or a subset of it. In case there
are attachments (MIME parts) these may remain external to the event envelope representation, and be referred to.

6.2 Event Board Operations

An operation, Post, adds an event entry to the event board (EB) – more precisely, adds an event envelope instance. Some at-
tributes of the event envelope are automatically added by the test engine implementation (ID, timePost), others are implicitly
passed or set (caseId, minstid). The event type @evtype needs be set for non-predefi ned events. The event @temp attribute
is set to “true” by default. The <evproperties> and <content> elements must be explicitly defi ned in the post statement, if
they must be added to the event envelope. All arguments of the post statement are optional.

<defi ne name=”Post”>
<element name=”post”>
<optional>
<attribute name=”step”><text/></attribute>
<attribute name=”evtype”><text/></attribute>
<element name=”evproperties”>
<!-- as in event defi nition -->
</element>
</optional>
<element name=”content”> <!-- event content -->
</element>
</optional>
</element>
</defi ne>

Table 3. Infoset for Post Operation

An operation, Find, selects one or more non-masked events from the event board within a time window. The selection is
based on an XPath expression or an XQuery. The operation may wait for the event(s), acting as a synchronizing control. To
be eligible for selection by this operation, an event of the event board must satisfy the following conditions:

 • the event is not masked for the monitor instance executing “Find”,
 • the event posting time (dateTime) is in the window [visibilityDate, time-cursor]
 • In case it is a temporary event, it is associated with the same CES as this monitor instance (it has been posted by a moni-

tor instance from the same test case execution).
 • The event is within scope (if any, defi ned by <scope> argument)

Only such events will be considered for selection. If they satisfy the selector element (if any, defi ned by <selector> argument),
then they will be part of the result set for the operation. The produced selection conforms to the <view> argument, if any, that
allows for projecting only a subset of event data for each selected event, into the result representation.
The parameters have the following semantics:

 • tryDuration: intuitively, how long can the Find operation “last” from the (virtual or real) time it starts to execute (called
the “effectiveTime”), until the event Board (EB) is in a state where the operation Find returns a positive result (i.e. at
least one selected event.) In other words, the Find operation may “query” the event board several times until it returns
a positive result, over the time window [effectiveTime, effectiveTime + tryDuration]. The fi rst positive result obtained
during these attempts is the fi nal outcome used in subsequent steps of the monitor execution. If tryDuration is absent:
the fi nd operation is executing only once, at effectiveTime (default value for tryDuration is 0).

 • scope: specifi es a set of events of which the event selection must be a subset. The returned set of selected events will be
the intersection of those selected from the EB (satisfying the <selector> element) and those from the scope. The scope
is specifi ed either in the same way as the <selector> argument, or as the result of a precious selection. If not present, the
default scope is the entire EB.

 • selector: specifi es a condition that each event to be selected from the EB must satisfy. May use XSLT2.0 path expres-
sions, inside a <xpath> container element. [may use Xquery predicates, inside a <xquery> container element] The selector

143International Journal of Web Applications Volume 1 Number 3 September 2009

applies to the sequence of events represented in the EB, that are in scope and also within the time window [visibiityDate,
time-cursor] associated with the CES within which the selection occurs.

 • view: determines how much data from each event record in the EB must be reproduced in the produced selection. It is
specifi ed as a set of Xpath expressions. If not present, only the event envelope data is returned, i.e. The event/content
element is absent.

<defi ne name=”Find”>
<element name=”fi nd”>
<optional>
<attribute name=”step”><text/></attribute>
<attribute name=”tryduration”><data type=”duration”/> </attribute>
<element name=”scope”>...</element>
</optional>
<element name=”selector”>
<optional>
<attribute name=”get”>
<choice>
<value>fi rst</value>
<value>last</value>
<value>all</value> <!-- default -->
</choice>
</attribute>
</optional>
[selection fi lter: choice of <xpath> or <xquery>]
</element>
<optional>
<element name=”view”>..</element>
</optional>
</element>
</defi ne>

Table 4. Infoset for Find Operation

7. Reference Architecture

For testing SOA systems that have various components and fl exible architecture, test requirement and the change in a test
target should be rapidly applicable on a test harness. Thus, the test harness should reuse easily test components and be re-
confi gurable.

BOSET is composed of a test component part and a test interface part (Figure 4). The test components include modules de-
fi ned in EDEM, which are classifi ed as stationary and non-stationary. Stationary module is static independent of any specifi c
standard and/or test environment. Non-stationary module could be changed dynamically according to standards or test suite
designs.

Stationary test components is composed of TMC(Test Main Component, Test Driver) and TCE(Test Confi guration Engine).
TMC orchestrates other test components and interfaces, and consequently drives the execution of test. TCE dynamically sets
up test components in accordance with a confi guration profi le. TSE(Test Sequence Engine) interprets and drives executable
test steps and interacts with test other components and interfaces.

Non-stationary test components include a test service module and an interpreter. Test Service stimulates target SUT(System
Under Test) with pre-defi ned actions, which include instructions at the test state. The actions could be modifi ed or created
for the test specifi cs. Interpreter reads the test case and then parses it into test procedure, test assertions, and confi guration
information. Interpreter could be modifi ed according to test suite design.
For interaction with SUTs, test drivers, and test users, BOSET has following interfaces:

MEI• (Messaging Engine Interface): delivers messages to/from SUTs based on the message protocol used. i.e., ebMS
engine, SOAP engine, etc.
TVI• (Test Validation Engine): validates messages according to verifi cation script. i.e, Xpath, Schematron, Xquery, JESS,
OWL, etc.
TUI• (Test User Interface): provides user-interface using web or intranet. i.e, IIC web UI, WS-I UI, etc.

144 International Journal of Web Applications Volume 1 Number 3 September 2009

Interface Operation Name Input Output

Test Validation Interface(TVI) Validation Validation script and target
messages

Validation result

Message Engine Interface(MEI) Sending Message Message Log

Query
(Receiving)

Query Script Message Log

Test User Interface(TUI) Reporting Results Report Document

Table 5. Abstract Defi nition of Test Interfaces

For interface model for Service Description, we adopted WSDL (Web Service Description Language), a standard specifi ca-
tion. TCE discoveries and dynamically deploys interface modules in the Universal Test Module Repository. Confi guration
document could be registered in a registry implemented according to UDDI (Universal Description, Discovery and Integra-
tion) specifi cation. TSE orchestrates deployed test component and interface modules. For dynamic invocation, WS-BPEL
(Web Service Business Process Execution Language) primitives could be used.

8. Conclusion

We presented a SOA test framework, which has been implemented in Korea government side for testing public SOA sys-
tems. The framework facilitates to test SOA systems by introducing the concept of business activity simulated event proxy.
For the framework, we also devised 2-layered test suites: abstract test suite and executable test suite. The abstract test suite
describes test workfl ow based on a business process. The executable test suite represents test operations in detail for test case
execution. This model decouples test procedure and test cases; as a result it enhances the reusability of test components. We
also provide reference architecture for SOA test framework, which will be a guideline to later implementation of business-
centric test framework.

References

[1] Nickul, D. (2007). Service Oriented Architecture (SOA) and Specialized Messaging Patterns, Adobe technical
paper, Dec.

Figure 4. Reference Architecture for EDEM

145International Journal of Web Applications Volume 1 Number 3 September 2009

 [2] Miller, Joaquin., Mukerji, Jishnu (2003). MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf,
OMG, June.

 [3] Covington, Robert D (2006). OMG EDA Standard Review, http://www.haifa.il.ibm.com/Workshops /oopsla2006/
present/omg_eda_rfi _presentation.pdf

 [4] Lee, Y et al., (2008). Web Services Quality Model 1.1, OASIS WSQM TC, Oct.
 [5] Durand, J. et al., (2004). ebXML Test Framework v1.0, OASIS IIC TC, Oct.
 [6] Wenzel, Peter et al., (2007). ebXML Messaging Services 3.0, OASIS ebMS TC, July.
 [7] Java XML Unit (JXUnit), http://jxunit.sourceforge.net.
 [8] JUnit, Java for Unit Test, http://junit.sourceforge.net.
 [9] ATML, (2006).Standard for Automatic Test Markup Language (ATML) for Exchanging Automatic Test Equipment

and Test Information via XML, IEEE, Dec.
[10] XPDL: (2003).XML Process Defi nition Language) (Workfl ow Management Coalition) Document Number WFMC-

TC-1025: Version 1.14 October 3.
[11] OASIS, (2006). Business Process Specifi cation Schema 1.0.1, May 2001 and ebBP, v2.0.4, October.
[12] OASIS, Web Services Business Process Execution Language 2.0 (committee draft in review phase), August 2006.
[13] Web Services Choreography Description Language (WSCDL), (2005).Version 1.0, (candidate recommendation)

November.

Author bibliography

Youngkon Lee is a professor of e-Business department at Korea Polytechnic University in Korea. He
received his Ph.D. from Korea Advanced Institute of Science Technology. His major research interests
include software and service quality of SOA, semantic web service, intelligent service framework
and business process automation. He is a individual member of OASIS and attends TAG and TAMIE
technical committee. He is also advising a Korea e-government project that is innovating overall
government IT framework.

